Поиск в словарях
Искать во всех

Физический энциклопедический словарь - момент количества движения.

 

Момент количества движения.

момент количества движения.
Очень важной задачей явл. движение в поле центр. сил притяжения. Угл. часть движения (вращение) определяется в К. м., как и в классической, заданием момента кол-ва движения М, к-рый при движении в поле центр. сил сохраняется. Но, в отличие от классич. механики, в К. м. момент может принимать только вполне определённые дискр. значения, т. е. имеет дискр. спектр. Это можно показать на примере орбитального (азимутального) движения ч-цы — вращения вокруг заданной оси (принимаемой за ось z). Волн. ф-ция в этом случае имеет вид «угл. волны де Бройля» еim, где  — азимут, а число m так же связано с моментом Mz, как в плоской волне де Бройля волн. число k с импульсом р, т. е. m=Мz/ћ. Т. к. углы  и +2 описывают одно и то же положение системы, то и волн. ф-ция при изменении  на 2 должна возвращаться к прежнему значению. Отсюда вытекает, что т может принимать только целые значения: m=0, ±1, ±2,..., т.е. Мz может быть равен:

Mz=mћ=0, ±ћ, ±2ћ, ... (19)

Вращение вокруг оси z — только часть угл. движения (проекция движения на плоскость ху), а Мzпроекция полного момента М на ось r.

Для определения М надо знать две остальные его проекции. Но в К. м. три составляющие момента не могут одновременно иметь точные значения. Действительно, проекция момента содержит произведение проекции импульса на соответствующее плечо — координату, перпендикулярную импульсу, а все проекции импульса и все плечи, согласно соотношениям неопределённостей (13), одновременно не могут принимать точно определ. значения. Оказывается, что кроме Mz, задаваемой числом m, можно одновременно точно задать величину момента, определяемую целым числом l:

M22l(l+1), l=0, 1, 2, ... (20)

Т. о., при описании угл. движения ч-цы вводятся два квант. числа — l и т. Число l наз. орбитальным квантовым числом; от него может зависеть значение энергии ч-цы (как в классич. механике от вытянутости орбиты). Число т наз. магнитным квантовым числом и при данном l может принимать значения 0, ±1, ±2, ..., ±lвсего 2l+1 значений; от m энергия не зависит, т. к. само значение т зависит от выбора оси z, а поле сферически симметрично. Поэтому уровень с квант. числом l имеет (2l+1)-кратное вырождение. Энергия уровня начинает зависеть от т лишь тогда, когда сферич. симметрия нарушается, напр. при помещении системы в магн. поле (Зеемана эффект).

При заданном моменте радиальное движение похоже на одномерное движение с тем отличием, что вращение вызывает центробежные силы. Их учитывают введением (кроме обычной потенц. энергии) центробежной энергии М2/2m0r2=ћ2l(l+1)/2m0r2 (здесь m0 — масса ч-цы). Решение ур-ния Шредингера для радиальной части волн. ф-ции атома определяет его уровни энергии; при этом вводится третье квант. число — радиальное nr или главное n, к-рые связаны соотношением: n=nr+l+1, nr=0, 1, 2, ..., n=1, 2, 3, ... . В частности, для движения эл-на в кулоновском поле ядра с зарядом Ze (водородоподобный атом) уровни энергии определяются ф-лой:

(me — масса эл-на), т. е. энергия зависит только от га. Для многоэлектронных атомов, в к-рых каждый эл-н движется не только в поле ядра, но и в поле остальных эл-нов, уровни энергии зависят также и от l.

На рис. 3 в статье Атом приведены распределения электронной плотности вокруг ядра в атоме водорода для состояний с низшими значениями квант. чисел n, l и m. Видно, что задание момента (чисел l и m) полностью определяет угл. распределение. В частности, при l=0(M2=0) распределение электронной плотности сферически симметрично. Т. о., квант. движение при малых l совершенно непохоже на классическое. Так, сферически симметричное состояние со ср. значением радиуса r0 отвечает как бы классич. движению по круговой орбите (или по совокупности круговых орбит, наклонённых под разными углами), т. е. движению с ненулевым моментом. Это различие между квантовомеханич. и классич. движениями — следствие соотношения неопределённостей и может быть истолковано на его основе. При больших квант. числах длина волны де Бройля становится значительно меньше расстояний L, характерных для движения данной системы:

В этом случае квантовомеханич. законы движения приближённо переходят в классич. законы движения ч-ц по определ. траекториям, подобно тому как законы волн. оптики в аналогичных условиях переходят в законы геом. оптики. Условие малости де-бройлевской длины волны (22) означает, что pL >>ћ, где pL по порядку величины равно классич. действию для системы. В этих условиях квант действия ћ можно считать очень малой величиной, т. е. формально переход квантовомеханич. законов в классические осуществляется при ћ0. В этом пределе исчезают все спецнфич. квантовомеханич. явления, напр. обращается в нуль вероятность туннельного эффекта.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):